
The UPP Subscription File 33-1

Chapter 33: The UPP Subscription File

UPP stands for UNIX Product Poll. It is a layer on top of UPD that can be
used to facilitate the update of products on a local UPS node as new versions
become available on a product distribution node. UPP is configured on the
local node by subscription files, which we describe in this chapter. The
functions UPP can be configured to perform on a local node include:

• notify the client of new and updated products on a specified distribution
node

• perform product installations and updates

• install/update product dependencies and resolve chains to maintain
integrity of main product

• delete old product versions

33.1 UPP Subscription File Header

The header of the UPP subscription file consists of lines of the form:

variable = value

in which the following variables may be defined:

Table 33.1.0-a:

file Always set this to the value upp

mail_addres
s

The email address where you want command output
to be sent

dist_node The node name of the product distribution node to
query for new/updated products

newprod_not
ify

Set to T (True) if you want to be notified of brand
new products; otherwise, leave it out or set it to any
other value (e.g., F)

33-2 The UPP Subscription File

Values here can have ${VARIABLE} strings, which are expanded from the
environment. In particular:

Subscribe to changes in your local databases (e.g., if you want mail when
someone updates products on your local system):

 dist_node = file://localhost${PRODUCTS}

Send mail to whoever runs the upp command:

 mail_address = ${USER}@fnal.gov

33.2 Stanzas

After the header, the UPP subscription file consists of one or more stanzas,
each bracketed by the lines begin and end. The number of stanzas per file
is not limited. A stanza cannot refer to multiple products, however there can
be multiple stanzas for the same product (e.g., for treating different instances
of the same product differently). Each stanza has three elements:

• identification of a product or particular instances of a product

• identification of the condition(s) for which you want UPP to perform the
instructions you give it (done via an action statement)

• a list of instructions, or functions to perform, for each condition

33.2.1 Product Instance Identification

The following terms can be used for matching a new or updated product
instance on the distribution node:

data_dir The full path to the directory where you want UPP
to maintain bookkeeping files. Each subscription
file must have its own data_dir. data_dir
must be writable when called from cron.

host_types A list of flavors (i.e., -H options, see Chapter 25:
Generic Command Option Descriptions) for which
to do product surveys. It defaults to the value given
by ups flavor.

Table 33.2.1-a:

product Product name

flavor Product flavor

Table 33.1.0-a:

The UPP Subscription File 33-3

Within a stanza, all instances that match a given set of values will be operated
on (in contrast to the standard UPS and UPD matching algorithms; see Chapter
27: Product Instance Matching in UPS/UPD Commands). You must at least
specify the product name (the product name alone matches all instances), all
further specification is optional and used to restrict the set of instances
matched. Typically, only product and sometimes flavor are specified.

33.2.2 Conditions and Instructions

After identifying a product instance(s) within the stanza, you need to tell UPP
what condition(s) to look for regarding the product, and what to do when the
conditions are met. One or more action = <value> lines can be
included to set conditions, each followed by a list of functions to perform.

version Product version

qualifi-
ers

Product qualifiers

prod_dir Product root
directory

chain Product chain

Table 33.2.1-a:

33-4 The UPP Subscription File

Actions

In a subscription file, the action keyword can take the following values
(indicating the condition):

List of Functions

The functions that can be used under an action = <value> line
currently take no arguments. All of the behavior is assumed to be defined by
the local UPD configuration (described in Chapter 32: The UPD
Configuration File) when UPP is invoked.

Table 33.2.2-a:

newversi
on

A new version of the product is installed on the
distribution node.

<chain> The product is chained to chain, where chain can be
current, test, or any other predefined or user-defined
chain (see section 2.3.5 Chains).

E.g., action = current

Table 33.2.2-b:

notify Place a notice of the new product instance in the mailed
output.

install Install the subscribed product via upd install.

delete Delete existing instance via ups undeclare -Y.

reget Short for: delete, then reinstall

update Update via upd update table_file:ups_dir.

resolve Run any ups declare commands as necessary to
make chains match so that parent product and
dependencies run properly together.

ups_conf
igure

Run the ups configure action for the product

ups_inst
allasroo
t

Run the ups installasroot action for the product

The UPP Subscription File 33-5

33.3 Examples

33.3.1 Sample UPP Subscription File

FILE = upp

MAIL_ADDRESS = somebody@fnal.gov

DIST_NODE = fnkits.fnal.gov

DATA_DIR = /var/adm/upp

NEWPROD_NOTIFY = T

#

example of watching for new releases of a particular
product:

#

begin

 product = xntp

 flavor = SunOS+5

 action = newversion

 notify

end

#

example of a product you want installed, but not chained,
when it goes current:

#

begin

 product = ximagetools

 flavor = SunOS+5

 action = current

 notify

 install

end

#

example of tracking kits closely:

* when a new version comes out we notify

* when it is declared or modified as test we reget it,
assuming the product

is allowed to have internal changes while in "test". We
"resolve" to have it

declared test here.

* when it is declared current, we install it (which only
does something if we

33-6 The UPP Subscription File

don’t have it) and update it to catch re-issues of table
files,etc. We

"resolve" to have it declared current here.

#

begin

product = exmh

flavor = SunOS+5

 action = newversion

 notify

 action = test

 notify

 reget

 resolve

 action = current

 notify

 install

 update

 resolve

end

A Second Example

This mails the user whenever my_product versions are made current on the
local system.

file=upp

mail_address=${USER}@fnal.gov

dist_node=file://localhost${PRODUCTS}

data_dir=${HOME}/.upp/myproduct

begin

 product=my_product

 action=current

 notify

end

The UPP Subscription File 33-7

33.3.2 A Longer Annotated Example

Here is a sample UPP subscription file with one stanza. It is more
comprehensive than a typical subscription file, illustrating the use of all the
supported actions and functions. Explanations are provided line by line.

Table 33.3.2-a:

file = upp This identifies the file as a UPP subscription
file.

mail_address =
joe@fnal.gov

Send mail notifications to joe@fnal.gov.

dist_node =
fnkits.fnal.gov

Use fnkits.fnal.gov (the central
Computing Division distribution node where
the KITS database resides) as the UPD
product distribution node to contact

data_dir =
/var/adm/upp

Use /var/adm/upp as the UPP
bookkeeping directory

newprod_notify = T Yes, notify me of new products appearing on
the UPD server node (i.e., in the KITS
database).

begin Begin a stanza.

 product = exmh Subscribe to exmh. In other words, perform
the following actions on it and on its
dependencies (the exmh flavors and versions
remain unspecified in this example, therefore
all instances are matched).

 action =
newversion

Define in the following lines one or more
functions to perform when a brand new
version of exmh appears in KITS.

 notify Send a notification message to joe@fnal.gov

 reget Remove (via ups undeclare -Y) and
then reinstall (via upd install) the
appropriate instance on the local node, and the
necessary dependencies.

 resolve upd install has determined which ups
declare commands need to be run so that
all the chains match up properly for the
dependencies to work; run these commands.

33-8 The UPP Subscription File

 action = current Define in the following lines one or more
functions to perform when a version of exmh
is chained to current in KITS.

 notify Send a notification message to joe@fnal.gov

 install Install the current instance in KITS (and its
dependencies as necessary) on the local node

 resolve upd install has determined which ups
declare commands need to be run so that
all the chains match up properly for the
dependencies to work; run these commands.

 action =
deprecated

Define in the following lines one or more
functions to perform when a version of exmh
gets deprecated (i.e., chained to a user-defined
chain of “deprecated”) in KITS. This is
included to illustrate the use of user-defined
chains.

 notify Send a notification message to joe@fnal.gov

 delete Delete the instance on the local node via ups
undeclare -Y.

end End stanza. (Additional stanzas may be
included in the same file; use begin and
end to bracket each one.)

Table 33.3.2-a:

